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a b s t r a c t

Offshore wind turbines (OWTs) have become increasingly popular for their ability to
harvest clean offshore wind energy. Bottom-fixed foundations are the most used founda-
tion type. Because of its large diameter, the foundation is sensitive to wave loads. For
typical manually assisted blade-mating operations, the decision to perform the mating
operation is based on the relative distance and velocity between the blade root center
and the hub, and in accordance with the weather window. Hence, monitoring the hub
real-time position and velocity is necessary, whether the blade installation is conducted
manually or automatically. In this study, we design a hub motion estimation algorithm
for the OWT with a bottom-fixed foundation using sensor fusion of a global navigation
satellite system (GNSS) and an inertial measurement unit (IMU). Two schemes are
proposed based on a moving horizon estimator, a multirate Kalman filter, an online
smoother, and a predictor. The moving horizon estimator mitigates the slow GNSS sam-
pling rate relative to the hub dynamics. The multirate Kalman filter estimates the position,
velocity, and accelerometer bias with a constant GNSS measurement delay. The online
smoothing algorithm filters the delayed estimated trajectory to remove sudden step
changes. The predictor compensates the delayed estimate, resulting in real-time monitor-
ing. HAWC2 and MATLAB are used to verify the performance of the estimation algorithms,
showing that a sufficiently accurate real-time position and velocity estimate with a high
sampling rate is achieved. A sensitivity study compares the accuracy of different algo-
rithms applied in various conditions. By combining both proposed algorithms, a sufficiently
accurate estimation can be achieved for a wider scope of practical applications.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Offshore wind turbines (OWTs) have become increasingly popular because of their high energy production and quality.
Though sensitive to wave loads, bottom-fixed monopile foundations are the most common type, because of their simple
shape, their large diameter, and a structural design driven mainly by fatigue loads [1]. Several publications focus on passive
and active approaches to reduce the fatigue damages by, e.g., adding a tuned mass damper [2,3], controlling the blade pitch
for operating OWTs [4], and using a ball vibration absorber [5].
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Nonetheless, the price of the electricity from offshore wind energy was three times higher than that from onshore
wind energy in 2016 [6]. Large expenses for installation and maintenance are primary reasons for the high price.
Two important approaches to reduce the cost of OWT installation are to improve the installation efficiency and to
decrease the offshore waiting time between successive operations. Fifteen million euros is currently the extra cost of
waiting for lower wind speed windows for the construction of a middle-sized wind farm in Europe [7]. Hence, several
studies have been conducted with an emphasis on installation in high wind scenarios, thereby improving the installation
efficiency. Studies on the critical allowable weather conditions for wind turbine installations are found in the literature
[8–10]. In other studies [11,12], a closed-loop controller has been proposed to stabilize a suspended single blade. To
achieve an effective mating performance, the blade root should follow the hub motion to reduce their relative displace-
ment and relative velocity, consequently reducing the resulting impact force. Therefore, a method to monitor the hub
displacement in real time is acutely necessary. The advantages and disadvantages of more than 20 commercial wind tur-
bine condition monitoring systems, as well as their main functions, have been compared in the literature [13]. On-site
acceleration data are recorded by the wind turbine condition monitoring systems; however, hub displacement monitor-
ing is lacking [14].

To estimate a position trajectory, the most used strategies are the direct measurement from a global navigation satellite
system (GNSS) and the double integration of the acceleration measurement, after a coordinate transformation, using an iner-
tial measurement unit (IMU) [15,16]. However, neither method is sufficient to handle the positioning problem for a dynamic
system with high frequency. In this study, a global positioning system (GPS) is used as a representation of the GNSS, illus-
trating that vital shortages exist in the direct GPS measurement. A GPS receiver operates at a low sampling rate with inferior
accuracy and with a time delay from the communication and computation. For a slow dynamic system, the low sampling
rate and the time delay effects are insignificant, e.g., in the case of a dynamic positioning system of an offshore vessel. How-
ever, the wave-induced motion on the wind turbine foundation is not a slow dynamic system [17]. The delay of the GPS
receiver can be several hundred milliseconds, such that the intersample motion becomes significant. Therefore, a motion
estimator must consider the time delay. The challenge of using measurements from an IMU is that the bias in the acceler-
ation measurement results in a drift when integrated twice. The bias results from assembly flaws and the ambient condi-
tions, such as temperature and humidity [18].

Integration of displacement and acceleration using a navigation filter has been widely applied in various areas. Normally,
the estimation approaches are categorized into extended stochastic linear estimation techniques, deterministic complemen-
tary filter and nonlinear observer design techniques, and combinations of these techniques [19]. Linearized Kalman filters,
such as the extended Kalman filter (EKF) and the unscented Kalman filter, are widely used in practice, even though global
stability is typically not guaranteed [20,21]. Nonlinear observers with stronger stability properties, however, are case-
specific and lack generic design methodologies. An exogenous Kalman filter is a combination of a linearized Kalman filter
and a nonlinear observer, which ensures both global stability and low variance in the estimates [22]. Examples of the appli-
cation of these approaches are building deformation and earthquake monitoring [23–25], pedestrian navigation systems
[26], dead reckoning [27], dynamic positioning systems [16,28], and aerial applications [29,30].

In this study, two hub motion estimation algorithms based on a GNSS/IMU fusion are customized to monitor the hub’s
real-time displacement and velocity for an OWT with a bottom-fixed monopile foundation. Combining both algorithms
ensures sufficient accurate estimations for most practical applications.

This paper is structured as follows. In Section 2, the problem statement is proposed with foundation modeling and a moti-
vational example. The characteristics of the hub motion are analyzed, and the complexity of the estimation scheme is
reduced to ensure operational feasibility. In Section 3, the estimation model is proposed. In Section 4, two algorithms are
developed based on a moving horizon estimator (MHE), a multirate Kalman filter (MKF), an online smoother, and a predictor.
The algorithms monitor the OWT hub displacement and velocity in real time. In Section 5, HAWC2 and MATLAB are used to
verify the performance of the monitoring algorithms. Sensitivity studies are conducted to evaluate the estimation perfor-
mance. The conclusions are presented in Section 6.

Notation: Scalars, vectors, and matrices are expressed with normal letters, bold lowercase letters, and bold uppercase
letters, respectively. The hat notation, x̂, denotes the estimate of a state x. I and 0 are a 2� 2 identity matrix and a zero

matrix, i.e., I ¼ 1 0
0 1

� �
and 0 ¼ 0 0

0 0

� �
.

2. Problem formulation

An OWT with a monopile foundation without blades is simulated in HAWC2 to illustrate the problem. HAWC2 is an
aeroelastic code designed to calculate the wind turbine response in the time domain [31]. In this study, the north-east-
down coordinate system nf g and body-fixed reference frame bf g are adopted and assumed inertial (see Figs. 1,2). Both of
the frames follow the right-hand rule. The origin nf g is located at the projection on the free water surface by the center
of the cross-section of the substructure at rest. The x-axis points to the north, the y-axis points the east, and z-axis points
downward. The origin of bf g is placed at the location of the IMU, with the xb- and zb-axes are pointing to the hub and down-
ward, respectively. The relative roll, pitch, and yaw orientation of bf g in nf g are denoted as /h; hh, and wh, respectively.



Fig. 1. The single blade installation scenario with monopile foundation, tower, pre-assembled hub, suspended blade, and the distributed spring model.

Fig. 2. Proposed model in the horizontal plane.
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2.1. Modeling of the monopile foundation and support structures

From low fidelity to high fidelity, the three most used monopile models are the apparent fixity model, the coupled spring
model, and the distributed spring model. Differences among the models are mainly from the modeling of the soil-pile inter-
action below the mudline. In this study, the distributed spring model is adopted [32,33]. The p-y model [34] is used in the
simulation. The soil, modeled as elastic springs, is layered with different effective weights and angles of internal frictions. As
defined by the American Petroleum Institute [35], the soil resistance is a function of the pile displacement at a given point
along the pile. Each layer is modeled as an uncoupled nonlinear spring with a layer-specific stiffness as shown in Fig. 1. The
soil parameters can be found in Table 1. The soil has higher initial modulus of subgrade reaction with increasing depth.
Timoshenko beams are used to model the pile, the transaction piece, the tower, and the hub [36–38].

In the following, the environmental parameters are the mean wind speed Uw, the turbulence intensity TI, the wind tur-
bulence seed STI , the main wind direction bwind, the significant wave height Hs, the wave period Tp, the wave seed Swave, and
the wave heading bwave. Normally, wave conditions for offshore operations are selected as Hs 6 3 m and 4 s 6 Tp 6 10 s. The
IEC Class C wind turbulence model is chosen [41]. Structure parameters could be identified by various optimization
approaches [42–44].



Table 1
Soil profile [39,40].

Depth under mudline Effective weight Angle of internal friction
(m) (kN/m3) (deg)

0–5 10.0 33.0
5–14 10.0 35.0
14–36 10.0 38.5
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2.2. Illustrating example

An OWT with a 66-meter monopile foundation has been hammered into the seafloor to a depth of 36 m. The water depth
is 30 m. All support structures have been assembled except the blades. The damping ratio of the foundation is tuned to be 1%.
The hub is rotated to a fixed yaw wh ¼ 0�, ready for further installation operations. The foundation structure is exposed to a
JONSWAP wave spectrum. The structural and environmental parameters are tabulated in Table 2. The waves spread to
30 deg north of east. The measurements are ideal, without sensor noise, bias, or delay. The simulation is conducted for
2000 s. The time domain simulation results of the hub displacement and its fast Fourier transform (FFT) results are presented
in Figs. 3 and 4. Since no blade is considered in the proposed simulation, the main responses of the monopile and tower
mainly result from the wave loads. The resonant responses at the first eigenmode at 3–4 s due to wave loads are dominated.
Furthermore, the relative velocity between the hub and blade root is important when dealing with the final connection of the
blade to hub. The velocity of the hub might be large due to the high resonant frequency.

The influence of the installed blades to the first fore-aft natural frequencies is presented in Table 3. As the total mass on
top of the tower increases when more blades are installed, it slightly decreases the natural frequencies of the fore-aft modes.
However, for the studied 5-MW wind turbine, the influences on the natural frequencies are very small, since the blades are
lightweight (17 tonnes each) compared with total mass without blade (1158.5 tonnes), which includes the nacelle (240 ton-
nes), the tower (347.5 tonnes) and the monopile (571 tonnes).

Since the hub displacement spectra agree well with narrow-band spectra, a second-order wave-induced motion spectrum
is used to fit the spectra, with the following form:
S fð Þ ¼ af

f 2 þ bf þ c
; ð1Þ
where a; b, and c are the coefficients. The derivative is
dS fð Þ
df

¼
�a f 2 � c

� �
f 2 þ bf þ c

� �2 ; ð2Þ
which implies a maximum value S f �ð Þ ¼ a
2
ffiffi
c

p þb at f
� ¼ ffiffiffi

c
p

. In Section 5.3, the time series generated by Eq. (1) are used to test

the estimation performance. Moving the FFT results in Fig. 4 leftward and rightward on the x-axis, the coefficients of the
fitted resulting spectra are tabulated in Table 4. The oscillation amplitude, spectrum bandwidth, and structural first fore-
aft natural frequency are determined by a; b, and c, respectively.

The key observations from the simulation results are as follows:

� The displacement of the hub is limited to a range in which the GPS noise is not negligible. Therefore, sensor noise from a
GPS receiver of poor quality will be a problem.
Table 2
OWT structural and environmental parameters.

Parameter Unit Value

Sub-structure length m 36
Foundation length m 30
Tower length m 77.6
Monopile diameter m 6
Wave spectrum type – JONSWAP
Water depth m 30
Significant wave height m 2.87
Wave period s 6.03
Monopile mass tonnes 571.0
Tower mass tonnes 347.5
Nacelle mass tonnes 240.0



Fig. 3. The history of the hub position for the proposed OWT w.r.t. the equilibrium, Hs ¼ 2 m, Tp ¼ 8 s, bwave ¼ 30�; Swave ¼ 75, Uw ¼ 8 m/s, TI ¼ 0:146, and
STI ¼ 94.

Fig. 4. The hub displacement spectra of measurement from Fig. 3 after an FFT, Hs ¼ 2 m, Tp ¼ 8 s, bwave ¼ 30� ; Swave ¼ 75, Uw ¼ 8 m/s, TI ¼ 0:146, and
STI ¼ 94.

Table 3
First fore-aft natural frequencies with different number of installed blades.

Number of installed blades First fore-aft natural frequency (Hz)

0 0.258
1 0.249
2 0.239
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� It is noted that the motion in the z-axis is small; hence, only the displacement in the horizontal plane, i.e., the x- and y-
directions, are of interest.

� From the eigenvalue analysis results, the first fore-aft natural period of the structure is approximately 4 s. Consequently,
the monopile wave-induced motion is not a slow dynamic process. Thus, the GPS update frequency may be too slow to
capture the motion well. This situation means that the intersample motion between the GPS updates must be considered.



Table 4
Coefficients that determine the fitted spectra of the hub horizontal motion at different natural periods.

Natural period (s) a b c

3 1.37e�06 �0.67 0.11
4 1.83e�06 �0.50 0.062
5 2.32e�06 �0.40 0.040
6 2.81e�06 �0.33 0.028
7 3.23e�06 �0.28 0.020
8 3.67e�06 �0.25 0.016
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In summary, neither a GPS nor an accelerometer is independently able to measure the OWT hub displacement ade-
quately. The GPS noise, GPS time delay, GPS low sampling rate, accelerometer noise, and accelerometer bias are significant
factors that influence the hub displacement in a real-time motion estimator.

2.3. Problem statement

The objective of this study is to develop an integrated motion estimator using sensor fusion of the GPS and IMU measure-
ments. It should provide real-time estimates of the position, velocity, and acceleration of an oscillating OWT hub at the mat-
ing height. For a single blade installation operation, the relative distance between the hub and the blade root affects the
successful mating rate, and the relative velocity influences the impact force [11]. Therefore, real-time hub position and veloc-
ity estimates with a sufficient accuracy and high sampling rate are necessary.

We assume the availability of a DGPS receiver and an IMU that are assembled as a sensor suite near the hub attachment;
the sample time steps for them are Tg and Ta, respectively, with Tg � Ta. The GPS operates at a lower sampling rate with a
delay sd. It is assumed that the time delay of the GPS signal varies as a function of the number of connected satellites, which
is a known constant during a given period. Define an integer Ndw sd

Ta
. The sampling interval of the GPS is assumed to be an

integer multiple of the IMU sampling interval, i.e., Tg=Ta ¼ M where M P 2 is an integer. The IMU provides a real-time noisy
and biased specific force measurement at a high sampling rate [16,18]. The IMU data are received in a sensor-fixed reference
frame at a fixed location in bf g. Zero-order hold (ZOH) sampling is used to simulate the discrete measurements, i.e., each
measurement remains constant until the next sampling instant. The assumptions are as follows:

1. The hub has been rotated to a fixed known yaw wh and wh is measured by a compass, where the wave- and wind-induced
motions have a negligible influence on wh.

2. The variation in rotation of the IMU about the x- and y-axes caused by the monopile motion is negligible, i.e., /h � 0 and
hh � 0.

3. The gravity vector is assumed constant in the NED coordinates.
4. The NED frame is assumed inertial, which implies the effect of the rotation of the earth is negligible.
5. The uncertain sensor parameters, i.e., unknown sensor bias and time delay, are constant during a given short period.
6. The GPS bias is negligible.

The first fore-aft natural frequency of the hub and the first-order natural frequency of the pendulum motion of the blade
are close to 0.26 Hz and 0.09 Hz, respectively. To accurately replicate both the shape and amplitude of a periodic motion, a
fast sampling is essential. Hence, 10 Hz is a suitable sampling frequency. Moreover, since the diameter of the guide pins are
only a few centimeters, a centimeter level accuracy positioning is necessary.

The IMU specific force measurement is transferred to f imu in bf g by a constant coordinate transformation. A simplified
horizontal-plane measurement model is given by
f imu tð Þ ¼R> _v tð Þ � g tð Þð Þ þ bb
a tð Þ þwb

a tð Þ; ð3Þ
pgps tð Þ ¼p t � sdð Þ þ vg tð Þ; ð4Þ
where f imu and pgps 2 R2 are the specific force and position measurements from the IMU in bf g and the GPS in nf g, respec-
tively, p 2 R2 is the real GPS receiver position, v 2 R2 is the velocity in bf g, _v is the acceleration at the IMU mounting loca-

tion, g 2 R2 is the acceleration caused by the gravity in nf g, bb
a 2 R2 is the bias in the specific force measurements, wb

a and
vg 2 R2 denote the zero-mean measurement noise from the IMU and GPS, t refers to the time, sd is the delayed time caused
by the GPS position estimate and the data communication time, and the rotation matrix is
R ¼ coswh � sinwh

sinwh coswh

� �
; ð5Þ
where wh is received from compass measurements.
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The motions on the top of a floating wind turbine, e.g., a floating spar, is easier to estimate, since the wave-frequency and
low-frequency motions are dominate, instead of the resonant frequency of the tower vibration. Therefore, the motion esti-
mation for a bottom-fixed wind turbine is more critical.

3. Observer design

The state estimate problem is modeled as a Wiener process. Because of Assumptions 1 and 4, the terms R and g are
assumed to be known constants.

We propose a hub motion estimator that consists of a multirate Kalman filter to estimate the state trajectories with opti-
mal filtering of the measurements, a smoothing filter for the step changes that occur due to the slower GNSS updates, and a
state predictor to compensate for the delays of the GNSS and the smoothing filter. To ensure good filtering of the IMU mea-
surements, we define the acceleration as a state driven by white noise in the process model used in the MKF, as shown in
model (6). In this way, the issue of the acceleration estimate being a direct feedthrough of the IMUmeasurements is avoided.
In the moving horizon estimator and predictor function, however, it is convenient to define the IMU acceleration measure-
ment as an input driving the position/velocity dynamics. Accordingly, we use a reduced model with only position and veloc-
ity as states for the predictor, as shown in model (8).

3.1. Process model for the Kalman filter

One approach is to set acceleration as a state, and the estimate can output filtered acceleration. Hence, the state-space
representation is then given by
_x1
_x2
_x3
_x4

2
6664

3
7775 t � sdð Þ ¼

0 I 0 0
0 0 I 0
0 0 0 0
0 0 0 0

2
6664

3
7775

x1
x2
x3
x4

2
6664

3
7775 t � sdð Þ þ

0
0
0
I

2
6664

3
7775wb t � sdð Þ; ð6aÞ

pgps tð Þ
f imu t � sdð Þ

� �
¼ I 0 0 0

0 0 R> �R>

� � x1
x2
x3
x4

2
664

3
775 t � sdð Þ þ vg

wa

� �
tð Þ; ð6bÞ
where x1 ¼ x; y½ 	> denotes the position vector indicating the location of the sensors at the hub, x2 ¼ vx;vy
� �> ¼ _x1 is the

velocity vector in nf g, x3 ¼ ax; ay
� �> ¼ _x2 is the acceleration vector in nf g, x4 ¼ �ba þ g ¼ bax; bay

� �> with ba ¼ Rbb
a refers to

the combined bias and gravity vector, wb 
 0;Q bð Þ with Q b 2 R2�2, wa ¼ Rwb
a 
 0;Q að Þ, and vg 
 0;Q g

	 

with Q g 2 R2�2.

The diagonal elements of Q g 2 R2�2 and Q a 2 R2�2 represent the covariances of the GPS noise and accelerometer noise,
respectively. The vector form is
R1 :
_x t � sdð Þ ¼ Ax t � sdð Þ þ Ew t � sdð Þ; að Þ
z ¼ Hx t � sdð Þ þ v s tð Þ; bð Þ

�
ð7Þ
where x ¼ x>
1 ; x

>
2 ; x

>
3 ; x

>
4

� �> 2 R8, z tð Þ ¼ p>
gps tð Þ; f >imu t � sdð Þ

h i>
2 R4, A 2 R8�8, H 2 R4�8, and w ¼ wb 2 R2 
 0;Qð Þ and

v s ¼ v>
g ;w

>
a

h i>
2 R4 
 0;Xð Þ with diagonal matrices Q ¼ Q b and X ¼ diag Q g ;Q a

	 

. The trends illustrated by Eq. (6) have

been proven [45].

3.2. Process model for the predictor and MHE

Another approach is to let the acceleration be an input that drives the position/velocity dynamics. The aim of this model is
to design the MHE. Similar to R1, the model is then given by
_x1
_x2
_x4

2
64

3
75 t � sdð Þ ¼

0 I 0
0 0 I
0 0 0

2
64

3
75

x1
x2
x4

2
64

3
75 t � sdð Þ þ

0
I
0

2
64

3
75Rf imu t � sdð Þ þ

0 0
I 0
0 I

2
64

3
75 wa

wb

� �
t � sdð Þ; ð8aÞ

z tð Þ ¼ I 0 0½ 	
x1
x2
x4

2
4

3
5 t � sdð Þ þ vg tð Þ; ð8bÞ
where x1 ¼ x; y½ 	>, x2 ¼ vx;vy
� �> ¼ _x1, x4 ¼ �ba þ Rg ¼ bax; bay

� �>, and z tð Þ ¼ pgps tð Þ. The vector form is
R2 :
_x t � sdð Þ ¼ Ax t � sdð Þ þ Bu t � sdð Þ þ Ew t � sdð Þ; að Þ
z tð Þ ¼ Hx t � sdð Þ þ v s tð Þ; bð Þ

�
ð9Þ



Z. Ren et al. /Mechanical Systems and Signal Processing 123 (2019) 222–243 229
where x ¼ x>1 ; x
>
2 ; x

>
3

� �> 2 R6, u ¼ Rf imu 2 R2, A 2 R6�6, B 2 R6�2, H 2 R2�6, w ¼ w>
a ;w

>
b

� �> 2 R4 
 0;Qð Þ with

Q ¼ diag Q a;Q bð Þ, and v s ¼ vg 2 R2 
 0;Xð Þ with X ¼ Q g .

3.3. Discrete system

Using a shift register to receive f imu tð Þ, the effects of time delay are canceled. Discretizing the continuous system (7) or (9)
and ignoring the system disturbance and measurement noise yields
xkþ1 k� Ndð Þ ¼ Adxk k� Ndð Þ R1ð Þ
Adxk k� Ndð Þ þ Bdu k� Ndð Þ R2ð Þ

�
; ð10aÞ

zk k� Ndð Þ ¼Hxk k� Ndð Þ; ð10bÞ

where the subscript k denotes the time instance tk ¼ kTs, where Ts is the sampling interval. In this paper, Ts ¼ Ta. The discrete
matrices are
Ad ¼ eATa ¼ I8�8 þ ATa; R1ð Þ
I6�6 þ ATa; R2ð Þ

�
ð10cÞ

Bd ¼ TaBþ T2
a

2
AB; ð10dÞ

Q d ¼
Z Ta

0
eAsQeA

>sds ¼ QTa þ QAT2
a þ AQA> T3

a

3
; ð10eÞ

Xd ¼ X=Ta: ð10fÞ
4. State estimation and prediction algorithms

A state estimation algorithm that compensates the GNSS delay and provides real-time monitoring of the hub position,
velocity, and acceleration is required. We propose two algorithms in this section. The hub motion estimator 1 (HME1)
has a low complexity because it does not include a moving horizon estimator and a nonlinear program solver. Based on
HME1, the hub motion estimator 2 (HME2) is developed to improve the prediction performance for the system with longer
natural period by introducing an MHE.

4.1. Algorithm 1 – HME1

The workflow diagram is presented in Fig. 6, and its steps are tabulated in Algorithm 1. Only R1 in (7) is necessary, and the
observer runs at a high frequency with an interval Ta. For every time step, the shift register #1 stores the real-time IMU
specific force measurement. The MKF estimates the states, based on the delayed GPS measurement and the delayed accel-
eration measurement. In a GPS sampling interval, the position measurements inputs to the MKF once. Shift register #4 stores
the data x̂ t � sdð Þ and the covariance matrices. Then the stored data are supplied to the online smoother. The online Rauch,
Tung, and Striebel (RTS) smoother conducts backward smoothing [46]. The additional delay caused by the smoother is ss so
Fig. 5. Sketch of how the HME1 works.



Fig. 6. Workflow diagram of the proposed algorithm (HME1).
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that the estimate becomes x̂ t � sd � ssð Þ. A predictor is used to bring forward the estimates to the present time t. Then, the
process moves on to the next step, and the above procedures are repeated. See Algorithm 1.
Algorithm 1 HME1.

Monopile hub position estimation zk;ak; t; Tg ;Nd;Ns
	 


Initialize: �ud ¼ 02�Nd
,�us ¼ 02�Ns , �x ¼ 09�Ns ,�xþ ¼ 09�Ns , P ¼ 09�9�Ns ,Pþ ¼ 09�9�Ns
1: while k do
Fig. 7. Sketch of how the HME2 works with MHE.
2: �ud = Shift register #1(ak)� �

3: x̂kjk;Pkjk; x̂kþ1jk;Pkþ1jk = Multirate Kalman filter (zk; �ud; t; Tg)� �

4: �x;P; �xþ;Pþ = Shift register #2(x̂kjk;Pkjk; x̂kþ1jk;Pkþ1jk)
5: x̂k t � sd � ssð Þ; �us½ 	 = Online RTS smoothing (�x;P; �xþ;Pþ; �ud)

6: x̂k tð Þ = Predictor(x̂k t � sd � ssð Þ; �ud; �us;Nd;Ns)

7: k ¼ kþ 1

8: end while
return x̂k tð Þ
4.2. Algorithm 2 – HME2

Based on the periodic motion of the hub, it is possible to predict the hub motion at a time instant in the near future based
on past observations. Moreover, the predictor in HME1 is a simple deterministic open-loop simulation that does not take into
account the stochastic properties of the measurements. Hence, to further improve the estimation performance, a more opti-
mal HME2 is proposed. The differences between HME1 and HME2 are illustrated in Fig. 7. In Algorithm 2, we introduce an
MHE. This gives optimal predictions to the states during the gap between two GPS updates, i.e., the MHE resamples the GPS
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sampling interval with a number of optimal position predictions according to past measurements and the process model R2.
This approach is equivalent to increasing the position sampling rate. Consequently, the MKF position estimation is corrected
at a higher frequency, which helps overcome large drifts accumulated during a GPS sampling interval.

It is noted that the fidelity of the predictions, according to the discrete GPS signal sequences, depends on the first fore-aft
natural frequency of the hub. Similar to the aliasing effect, limited GPS sampling points from the continuous narrow-band
hub position history implies lost information regarding the dynamics and a less accurate prediction. Therefore, HME2 is
more suitable for oscillations with a longer natural period.

The workflow diagram and process are presented in Fig. 8 and Algorithm 2. The calculation interval of the MHE solver is
Tm, i.e., Ta < Tm < Tg . Shift register #2 updates every Tg and outputs stored data with delayed IMU specific force and GPS
measurements every Tm. Together with the initial value provided by shift register #3, xm0;k, the MHE solver calculates the
delayed states xm t � sdð Þ using nonlinear programming. The yellow blocks (multirate Kalman filter, smoother, and predictor)
remain the same as those used in HME1 by taking the position ẑk from xm t � sdð Þ, instead of taking zk directly from the GPS
measurements.
Algorithm 2 HME2.

Monopile hub position estimation zk;ak; t; Tg ; Tm;Nd;Ns;Nm
	 


Initialize: �ud ¼ 02�Nd
,�us ¼ 02�Ns , �xm ¼ 02�Nm , �x ¼ 09�Ns ,�xþ ¼ 09�Ns , P ¼ 09�9�Ns ,Pþ ¼ 09�9�Ns
1: while k do
Fig. 8. Workflow diagram of the proposed algorithm with moving horizon estimator (HME2).
2: �ud = Shift register #1(ak)

3: �uk; �zk½ 	 = Shift register #2(�ud; zk)

4: xm0;k = Shift register #3(xkjk)

5: ẑk = Moving horizon estimator(�uk; �zk; xm0;k)� �

6: x̂kjk;Pkjk; x̂kþ1jk;Pkþ1jk = Multirate Kalman filter (ẑk; �ud; t; Tm)
7: �x;P; �xþ;Pþ
� �

= Shift register #4(x̂kjk;Pkjk; x̂kþ1jk;Pkþ1jk)
8: x̂k t � sd � ssð Þ; �us½ 	 = Online RTS smoothing(�x;P; �xþ;Pþ; �ud)

9: x̂k tð Þ = Predictor(x̂k t � sd � ssð Þ; �ud; �us;Nd;Ns)

10: k ¼ kþ 1

11: end while
return x̂k tð Þ
4.3. Implementation

4.3.1. Delayed IMU measurement and stored signals
To input the delayed IMU measurement, Algorithm 3 is applied to shift the measurement Nd steps. Furthermore, the IMU

specific force measurement during the delay is stored and input to the predictor in Algorithm 9.
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Algorithm 3 Shift register #1.

Shift register #1 akð Þ
1: �ud ¼ ud :;2 : Ndð Þ;ak½ 	
return �ud
4.3.2. Moving horizon estimator
The GPS and IMU do not sample synchronously. The aim of the MHE is to fill the gap between two subsequent GPS

updates with reasonable state predictions. For a discrete dynamics model R2, the current state (xk) depends on the sequence
of past inputs Uk ¼ col uk�N � � �uk�Nð Þ and its initial value xk�N . The measurement zk is a mapping of the states xk. Therefore,
the states Xk ¼ col xk�N � � � xk�Nð Þ are estimated with a sequence of measurements Zk ¼ col zk�N � � � zk�Nð Þ by minimizing the
error of the measurement error and the disturbance. The states at the last step can be treated as filtered signals. Then,
the position estimation from the MHE inputs to the MKF. First, two shift registers are required to provide the historic mea-
surements and inputs, as well as the initial value for the MHE solver; see Algorithms 4 and 5.

Algorithm 4 Shift register #2.

Shift register #2 �ud; zkð Þ
1: uk ¼ �ud :;1ð Þ
2: �uk ¼ ud :;2 : Ndð Þ;uk½ 	
3: �zk ¼ ud :;2 : Ndð Þ; zk½ 	
return �uk, �zk
Algorithm 5 Shift register #3.

Shift register #3 xkjk
	 


1: �xm ¼ um :;2 : Nmð Þ; xkjk
� �

2: xm0;k ¼ �xm :;1ð Þ
return xm0;k
Z and U update every Tg , and the MHE solves the nonlinear program with an interval Tm. At all steps except the MHE
updating time, i.e., rem t; Tmð Þ ¼ 0, the MHE should predict the current state based on past measurements and inputs. The
cost function is given by
min
S;Q

Xk�1

i¼k�Nmþ1

kwikQ þ
Xk�1

i¼k�Nm

þ kv ikR þ kvkkRf
; ð11aÞ

s:t:wi ¼ xiþ1 � Adxi þ Bduið Þ; i ¼ k� Nm þ 1; � � � ; k� 1; ð11bÞ
v i ¼ zi � Cdxi; i ¼ k� Nm; � � � ; k� 1; ð11cÞ
wk ¼ xk � Adfxk�1 þ Bdfuk�1

	 

; ð11dÞ

vk ¼ zk � Cdxk; ð11eÞ
tf ¼ Tg þ rem t; Tg

	 
 ð11fÞ
Adf ¼ I6�6 þ tfA; ð11gÞ

Bdf ¼ tfBþ t2f =2AB; ð11hÞ

Rf ¼
R > 0; if tf ¼ 0;

0; otherwise;

(
ð11iÞ
where rem a; bð Þ is the remainder after division of a by b, Q and R are positive-definite diagonal weighting matrices, and the

weighted Euclidean norm is expressed as kwik2Q ¼ w>
i Qwi.
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4.3.3. Multirate Kalman filter
A Kalman filter is used to filter the noisy measurements in the state equation R1. Because the sampling frequency in the

GPS and the IMU are different, the MKF is modified from the classic Kalman filter, as illustrated in Fig. 5. The MKF works at
the same frequency as the IMU. When the GPS signal is available, i.e., at t=Tg ¼ integer steps, the GPS signal corrects the esti-
mate. Otherwise, at a moment when the GPS measurement is not available, i.e., at t=Tg – integer, the part of the Kalman gain
matrix K according to the position measurements is set to zero, and the estimate is updated with merely the acceleration
measurements as a state in Eq. (7) or as an input in Eq. (9). The error grows until it is corrected at the next GPS update.
The summarized algorithm is tabulated in Algorithm 6. At this stage, the MKF calculates the delayed estimate t � sd.

Algorithm 6 Multirate Kalman filter.

Multirate Kalman filter ẑk; �ud; t; Tð Þ
1: Initialize: x̂0j0, P0j0 ¼ I6�6

2: uk ¼ �ud :;1ð Þ
3: x̂kþ1jk ¼ Adx̂kjk þ Bduk

4: Pkþ1jk ¼ AdPkjkA
>
d þ Q d

5: K kþ 1ð Þ ¼ Pkþ1jkH
> HPkþ1jkH

> þXd
� ��1

6: if t=T – integer then
7: K 1 : 2; :ð Þ ¼ 02�4

8: end if
9: x̂kþ1jkþ1 ¼ x̂kþ1jk þ K kþ 1ð Þ ẑkþ1 �Hx̂kþ1jk

� �
10: Pkþ1jkþ1 ¼ I � KkHkð ÞPkþ1jk

return x̂kjk;Pkjk; x̂kþ1jk;Pkþ1jk,
4.3.4. Smoothing
The MKF leads to discontinuous points when t=Tg ¼ integer. Therefore, smoothing is conducted to smooth the estimate

along the time history. There are three categories of smoothing: fixed-interval smoothing, fixed-point smoothing, and fixed-
lag smoothing.

A widely used offline fixed-interval smoothing method is the RTS smoother, also referred to as the two-pass smoother
[46]. A forward pass is the Kalman filter, which computes the filtered quantities, x̂kjk;Pkjk; x̂kþ1jk;Pkþ1jk, and stores them in
the memory. The backward pass smooths the estimate. However, the RTS smoother is an offline algorithm that process
the stored estimate data from the Kalman filter. At the end of an estimation on a given dataset, the RTS smoother normally
runs once. For a real-time application, however, the algorithm is insufficient. Thus, to ensure an online application, a window
function is employed to accomplish the backward pass for each step, where Ns is the length of the moving window. The pro-
cedure is summarized in Algorithm 7 and 8. Due to the additional phase shift of the online smoothing, the estimate is now
further delayed by t � sd � ss.

Algorithm 7 Shift register #4.

Shift register#4 x̂kjk;Pkjk; x̂kþ1jk;Pkþ1jk
	 


1: �x ¼ �xkjk :;2 : Nsð Þ; x̂kjk
� �

2: P ¼ Pkjk :; :;2 : Nsð Þ;Pkjk
� �

3: �xþ ¼ �xkþ1jk :;2 : Nsð Þ; x̂kþ1jk
� �

4: Pþ ¼ Pkþ1jk :; :;2 : Nsð Þ;Pkþ1jk
� �

return �x;P; �xþ;Pþ
Table 5
Sensor parameters in the simulations.

Parameter Value Unit

GPS accuracy �0:03 m
GPS sampling rate 1 Hz

GPS delay 0:2 s
Accelerometer accuracy �0:15 m/s2

Accelerometer sampling rate 100 Hz
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Algorithm 8 Online RTS smoothing

Online RTS smoothing �x;P; �xþ;Pþ;uk
	 


Initialize: x̂Ns jNs ¼ �x :;Nsð Þ, PNs jNs ¼ �x :; :;Nsð Þ

1: �us ¼ �us :;2 : Nsð Þ; �ud :;1ð Þ½ 	

2: if k 6 Ns then

3: x̂k ¼ �x :;1ð Þ

4: else

5: for j ¼ Ns � 1 : �1 : 0 do

6: x̂jjj ¼ �x :; jð Þ, x̂jþ1jj ¼ �xþ :; jð Þ, Pjjj ¼ �P :; :; jð Þ, Pjþ1jj ¼ �Pþ :; :; jð Þ

7: A jð Þ ¼ PjjjA

>
d P

�1
jþ1jj� �
8: x̂jjNs ¼ x̂jjj þ A jð Þ x̂jþ1jNs � x̂jþ1jk� �

9: PjjNs ¼ Pkjk þ A kð Þ Pkþ1jNs

� Pkþ1jk A> kð Þ

10: end for

11: x̂k t � sd � ssð Þ ¼ x̂0jNs
12: end if

return x̂k t � sd � ssð Þ; �us
4.3.5. Predictor
To move the estimated states forward to the present time t, a predictor is proposed. The time delay sd þ ss is still small;

thus, the integration drift caused by the accelerometer bias is not significant until the next GPS correction. During the time
delay, all acceleration inputs to Eq. (10a) are known. Therefore, the present estimate is achieved by updating Eq. (10a) for
Nd þ Ns steps with the input vectors �ud and �us. The process is illustrated in Algorithm 9.

Algorithm 9 Predictor

Online RTS smoothing x̂k t � sd � ssð Þ; �ud; �us;Nd;Nsð Þ
1: for i ¼ 1 : Nd � 1 do
2: x̂k ¼ Adx̂k þ Bd�ud :; ið Þ
3: end for
4: for i ¼ 1 : Ns do
5: x̂k ¼ Adx̂k þ Bd�us :; ið Þ
6: end for

return x̂k tð Þ
5. Verification of the proposed algorithms

5.1. Simulation overview

The simulation is conducted with HAWC2 and MATLAB [47]. The model mentioned in Section 2.2 is adopted in the fol-
lowing simulations. The monopile is exposed to irregular waves and a turbulent wind field. The environmental parameters
are listed in Table 2. HAWC2 outputs high-frequency position, velocity, and acceleration at the hub, which are considered as
the real values in the simulations. After adding zero-mean white noise processes and a slow-varying bias, and resampling
with specific sample rates with delays, the resulting position and acceleration signals are used as measurements from GNSS
and IMU. The important sensor parameters are listed in Table 5. The time step Ta is selected as 10 ms. The biases on the IMU
specific force measurements are simulated as Wiener processes.

To evaluate of the performance of the state estimator, the mean square error (MSE) is introduced as criterion as follows:
MSE :¼ 1
N

XN
k¼1

xk � x̂kð Þ2; ð11jÞ
where N is the total number of steps used in the estimate.
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5.2. Simulation results

The simulation results are presented in Figs. 9–14. The double integration of the acceleration measurement drifts off sig-
nificantly due to the IMU bias, as expected. The performance of HME1 and HME2 are similar. Both HME1 and HME2 provide a
Fig. 9. Position estimate, Hs ¼ 2 m, Tp ¼ 6 s, bwave ¼ 30�; Swave ¼ 10;Uw ¼ 8 m/s, TI ¼ 0:146, and STI ¼ 596.

Fig. 10. Position estimate, zoomed in, Hs ¼ 2 m, Tp ¼ 6 s, bwave ¼ 30�; Swave ¼ 10;Uw ¼ 8 m/s, TI ¼ 0:146, and STI ¼ 596.



Fig. 11. Velocity estimate, Hs ¼ 2 m, Tp ¼ 6 s, bwave ¼ 30� ; Swave ¼ 10;Uw ¼ 8 m/s, TI ¼ 0:146, and STI ¼ 596.

Fig. 12. Velocity estimate, zoomed in, Hs ¼ 2 m, Tp ¼ 6 s, bwave ¼ 30�; Swave ¼ 10;Uw ¼ 8 m/s, TI ¼ 0:146, and STI ¼ 596.
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high-frequency real-time motion estimation. Although the GPS sampling rate of 1 Hz is quite low, the MKF accurately esti-
mates the position and velocity of the hub, including the sensor bias. The MKF suppresses the GPS measurement noise, and
the estimate approaches the real state. The online smoother smooths the trajectory in the case of sudden changes which may
cause high derivatives. The predictor corrects the delay between the smoothed estimate and the real values. The proposed
GNSS/IMU integration scheme greatly improves the GPS measurement in terms of both the accuracy and sampling rate. As



Fig. 13. Acceleration estimate, Hs ¼ 2 m, Tp ¼ 6 s, bwave ¼ 30�; TI ¼ 0:146; Swave ¼ 10;Uw ¼ 8 m/s, and STI ¼ 596.

Fig. 14. Accelerometer bias estimate, Hs ¼ 2 m, Tp ¼ 6 s, bwave ¼ 30� ; TI ¼ 0:146; Swave ¼ 10;Uw ¼ 8 m/s, and STI ¼ 596.
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Fig. 15. MSE of hub motion estimates using different methods in various hub motion amplitudes, natural period 4 s.
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shown in Figs. 11–13, the velocity and acceleration estimates converge to the real values. The error of the velocity estimate is
within 0.05 m/s; see Fig. 12.

From the accumulated absolute errors (Figs. 9 and 11), HME1 has a better position estimation, whereas the velocity and
bias estimates from HME2 are slightly better. In the case study, the monopile natural period is 3.8 s, for which the GPS
sampling interval is too large. Hence, the moving horizon estimator struggles to predict precisely according to the sampled
data. In summary, in this scenario, HME1 is preferred because of its lower complexity and sufficient accuracy.

5.3. Sensitivity study on the oscillation amplitude

In Section 5.2, the simulation results show that the estimation performance of HME2 is not improved by MHE. In this sec-
tion, a sensitivity study is conducted to show how the environmental conditions influence the performance of HME1 and
HME2. A series of simulations are conducted. The time series generated by the fitted spectra (Eq. 1) in Table 4 are selected
as standard measurements and inputs with an oscillation amplitude less than 1 m. The generated time series is multiplied by
a coefficient Na 2 0:05;0:1; 0:2;0:5;0:7;1;2;3;7;10f g to simulate the oscillations with distinct amplitudes. All the other
parameters, e.g., the GPS and IMU measurement noises, remain the same in all the simulations. The incoming direction of
the wave is 30�, i.e., bwave ¼ 30�. To analyze the performance of the HME1 and HME2 algorithms, we also implement an
EKF and an MKF for comparison. The EKF is implemented based on the plant model (6), where the innovation from the
GPS signal is set to zero when the GPS signal is not available. Similarly, the MKF is implemented based on the delayed
GPS signals.

Taking the natural periods 4, 6, and 8 s as examples, the influence of the oscillation amplitudes on the various estimation
schemes are shown in Figs. 15–17. It is easy to notice that the MSEs of both position and velocity estimates increase with the
motion amplitude. The EKF shows the best performance when the oscillation amplitude is less than 0.1 m, i.e., when the
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Fig. 16. MSE of hub motion estimates using different methods in various hub motion amplitudes, natural period 6 s.

Z. Ren et al. /Mechanical Systems and Signal Processing 123 (2019) 222–243 239
motion estimator is not necessary. However, the EKF fails to accurately monitor the motion when Na P 0:1. Use of only the
MKF (Algorithm 6) without shift register #1 (Algorithm 3) yields medium performance results as compared with HME1 and
HME2. Because of the GPS delay, there is always a delay between its estimate and the real value. With the correction by the
predictor, the delay increases when the MKF updates with the delayed IMU specific force measurement from shift register
#1. Both HME1 and HME2 estimate the velocity well.

For an OWT with a first fore-aft natural period 4 s, HME2 estimates the position better when the oscillation amplitude is
less than 0.3 m, whereas HME1 shows better performance when the amplitude is larger than 0.3 m; see Fig. 15. For an OWT
with a 6-s natural period, the performance boundary is at an amplitude of 1 m; see Fig. 16. Normally, the hub motion ampli-
tude is located in the yellow envelope. Hence, both the HME1 and HME2 will improve the estimation performance over a
single MKF.

Applying HME2 when the oscillation amplitude is less than the specific amplitude boundary, and adopting HME1 for the
cases with oscillation amplitudes larger than the boundary, appear to achieve the best estimation performance.
5.4. Sensitivity study on the natural period and oscillation amplitude

Allowing the natural period to be from 3 to 8 s, the results of the best algorithms are illustrated in Fig. 18, using the cri-
terion of minimumMSE. The yellow area shows the normal envelope of oscillation amplitude and natural period for an OWT.
The detailed MSE results in three example conditions are presented in Tables 6–9. HME1 provides the best position estimate
at upper left corner in Fig. 18, while HME2 is the best choice, shown in the lower right corner. MKF is the best scheme to use
at two points ([0.5 m, 4 s] and [0.5 m, 5 s]), where the performance of MKF, HME1, and HME2 are very similar; see Fig. 15 The
velocity estimate by HME2 is slightly better than the one from HME1. The performance of HME2 improves with an increasing
natural period of the hub and with a decreasing oscillation amplitude. For the conditions in Tables 6–8, HME2 improves the
estimate by approximately 20–30%. However, the estimate from HME1 is more accurate when the natural period is small;
see Table 9.



Fig. 17. MSE of hub motion estimates using different methods in various hub motion amplitudes, natural period 8 s.

240 Z. Ren et al. /Mechanical Systems and Signal Processing 123 (2019) 222–243
Because of the low sampling rate of the GPS and the relatively high hub oscillation frequency, the moving horizon esti-
mator struggles to accurately estimate using the sampled GPS signal and specific force measurements when the natural per-
iod of the OWT is low. HME2 greatly improves the estimate in the low-amplitude and long-natural-period region, whereas
HME1 performs better in the region with higher motion amplitudes. Therefore, the suitable scheme can be decided by the
oscillation amplitude and frequency.

6. Conclusions

Due to the slow GNSS sampling interval and GNSS delay, traditional discrete methods fail to provide good real-time
motion estimations for a system with higher frequency. This paper proposes two GNSS/IMU integration schemes to estimate
the offshore wind turbine hub position with a bottom-fixed foundation during the mating process. The systems include a
multirate Kalman filter, an online RTS smoother, a moving horizon estimator, and a predictor. Simulations have verified that
in the fast system, the estimators are sufficiently accurate. The estimates agree well with the real values for position, veloc-
ity, acceleration, and bias. The state observer filters the noise in the GPS and the IMU, overcomes the GPS delay, and achieves
high-frequency displacement and velocity monitoring functionalities in real time.

Based on a comparison with the EKF and the MKF, the HME1 algorithm performs significantly better used as a real-time
hub motion estimator during blade installation under some relevant conditions, while HME2 performs significantly better
under some other relevant conditions. The performance of the state estimators is affected by the oscillation amplitude
and the natural period of the hub structure. HME2 works well in the low-amplitude and low-frequency region, whereas
HME1 shows superior performance in the region with higher motion amplitudes. Hence, both estimators could be imple-
mented with a supervisory switching logic [48]. Both algorithms provide a sufficiently accurate estimate of the hub motion
states in relevant conditions, thereby providing improved hub monitoring and increased safety and efficiency in practical
applications.



Fig. 18. The best schemes with different oscillation amplitudes and natural periods.

Table 6
The MSE of different algorithms, monopile natural period 4 s, oscillation amplitude 0.2 m.

Natural period (s) x y vx vy

EKF 5.98e�3 2.07e�3 3.53e�3 1.25e�3
MKF 1.52e�3 1.66e�3 0.52e�3 0.57e�3
HME1 1.79e�3 2.02e�3 0.57e�3 0.63e�3
HME2 1.42e�3 1.46e�3 0.49e�3 0.52e�3

Table 7
The MSE of different algorithms, monopile natural period 8 s, oscillation amplitude 0.2 m.

Natural period (s) x y vx vy

EKF 3.42e�3 1.25e�3 1.98e�2 0.74e�3
MKF 1.63e�3 1.71e�3 0.56e�3 0.58e�3
HME1 1.88e�3 2.05e�3 0.59e�3 0.64e�3
HME2 1.38e�3 1.45e�3 0.49e�3 0.52e�3

Table 8
The MSE of different algorithms, monopile natural period 8 s, oscillation amplitude 1 m.

Natural period (s) x y vx vy

EKF 8.46e�2 2.82e�2 4.78e�2 1.59e�2
MKF 7.81e�3 3.89e�3 3.25e�3 1.50e�3
HME1 6.59e�3 3.68e�3 2.81e�3 1.39e�3
HME2 4.99e�3 2.60e�3 1.73e�3 0.92e�3
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Table 9
The MSE of different algorithms, monopile natural period 3 s, oscillation amplitude 2 m.

Natural period (s) x y vx vy

EKF 5.23e�1 1.74e�1 2.92e�1 0.98e�1
MKF 8.61e�3 4.05e�3 4.06e�3 1.75e�3
HME1 2.25e�3 2.17e�3 2.89e�3 1.40e�3
HME2 13.61e�3 5.52e�3 2.96e�3 1.34e�3
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